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Abstract. Within this paper we study the Minkowski sum of prisms (“Cephoids”) in a
finite dimensional vector space. For a vector a ∈ R

n with positive components we write
ā = ( 1

ā1
, . . . , 1

ān
) and denote by �=�ā ={x ∈R

n|〈ā,x〉� 1 , x � 0} the associated prism. We
provide a representation of a finite sum of prisms in terms of inequalities.

Mathematics Subject Classifications (2000): 52A07, 26A27, 90C08.
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1. Introduction

For two arbitrary subsets A,B ⊂ R
n the Minkowski sum is defined by the

formula A + B = {z = a + b|a ∈ A, b ∈ B} and for λ ∈ R and A ⊂ R
n the

multiplication is defined by λA={x =λa|a ∈A}. If A and B are convex sets
then the sets A+B and λA are also convex and if moreover A and B are
polytopes, then A+B and λA are also polytopes. Thus the Minkowski sum
of finitely many polytopes is the convex hull of the sum of its extreme points.

In addition to this representation it is frequently helpful to have a dual
representation of the Minkowski sum of finitely many polytopes in terms of
inequalities. One point is that the Minkowski sums of prisms are the basic
objects in cooperative game theory (see [4, 5]). Another point is that they
constitute the feasible regions of generalized knapsack problems, that is, of
linear optimization problems of the type:

max 〈c,x〉
under

(P0) x =z1 +z2 +· · ·+zk

with
〈ai , zi〉 � αi i ∈{1, . . . , k},

zi � 0

with c,ai , zi ∈R
n and αi ∈R.

∗Dedicated to the 65th birthday of Alexander Rubinov.
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Structural properties about the Minkowski sum of prisms, such as the
number of faces and symmetries for the generic case have been studied in [3].
We have called a finite sum of prisms a “cephoid”.

Contrary to these investigations, we do not focus on the generic or
“nondegenerate” case in the present paper. As a consequence, the results
are weaker but more general. In particular, we provide a version of the
coincidence theorem which yields a necessary and sufficient condition for
maximal faces – but lacks the specific enumeration of the coordinates as
specified in [3].

This version turns out to be much more suitable for computational pur-
poses. When computing the maximal faces of cephoids, we do not want to
test for nondegeneracy in advance. Hence, there is a particular emphasis on
computational aspects in the present paper.

Let us denote by 0 ∈ R
n the origin and by ei the ith unit vector of R

n

for i ∈{1, . . . , n}. For a vector a = (a1, . . . , an)>0 ∈R
n, let

�a = conv
({

0,a1, . . . ,an
})

with ai =aie
i , i ∈ {1, . . . , n}. We call �a a prism associated to the vector

a = (a1, . . . , an)>0 ∈R
n.

Observe that �a ={x ∈R
n|〈ā,x〉�α and x �0}, where ā=

(
α
a1

, . . . , α
an

)
∈

R
n is called the outer normal (for level α >0) of �a. In this paper we will

always choose α =1.

We call

�a = conv
({

a1, . . . ,an
})

the Pareto face of �a.

Whenever, we have finitely many vectors, say a(1), . . . ,a(K) ∈ R
n with

a(k) =
(
a

(k)

1 , . . . , a(k)
n

)
>0 ∈R

n, we will write for the corresponding prisms

�(k) =�a(k) = conv
({

0,a(k),1, . . . ,a(k),n
})

with a(k),i =a
(k)
i ei , i ∈{1, . . . , n}, k ∈{1, . . . ,K}.

2. The Decomposition Principle

Henceforth, we write I = {1, . . . , n}. For the convex hull of the extreme
points ai1, . . . ,air of the prism �a we will use the abbreviation

conv
({

ai1, . . . ,air
})= [ai1, . . . ,air ]=�

(a)
J ,
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with J ={i1, . . . , ir}. For a collection of prisms �a(k)

, k =1, . . . ,K, we will
write

�
(k)

J (k) =�
(a)(k)

J (k)

for the convex hull of the extreme points

{
a(k),l

}
l∈J (k) ⊂�a(k)

whenever J (k) ⊆ I is subset of coordinates.

LEMMA 2.1. For a vector a = (a1, . . . , an)>0∈R
n let �a be the associated

prism. Then, for every extreme set S ⊂�a there exist J ⊆ I such that

S = conv
({

ai
})

i∈J
=�

(a)
J .

Proof. Let S ⊂�a be an extreme set of the Pareto-face �a of �a. Then by
definition of an extreme set we have that for every two points u,v∈�a whose
line-segment [u,v] intersects S, i.e. [u,v]∩S �=∅, it follows that u,v ∈S. If we
perform this procedure with the extreme points of �a we get a collection
of extreme points

{
ai

}
i∈J

of �a which are elements of S. Hence it follows
that

S = conv
({

ai
})

i∈J
=�

(a)
J

holds true which proves the assertion.

The key for all investigations of the structure of the Minkowski sum of
prisms or cephoids is the theorem on the addition of faces (see [6] and [7]),
which we will state here in the following way:

LEMMA 2.2. (The Decomposition of Faces). Let a(1), . . . ,a(K) ∈ R
n be a

family of positive vectors and let

�=
K∑

k=1

�(k)

with �(k) =�a(k)

for k∈{1, . . . ,K} be the generated cephoid. Let F ⊂� be a
maximal face of �, i.e. dimF = (n− 1) and let nF ∈R

n be an outer normal
of the face F, i.e.

F =�∩{x ∈� | 〈nF ,x〉=d∗}, j =1, . . . , k,
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where

d∗ =max
x∈�

〈nF ,x〉>0.

Then there exists K0 ⊆{1, . . . ,K} and index sets J (k) ⊆I (k ∈K0) such that

F =
∑

k∈K0

�
(k)

J (k) +p

where p is a sum of extreme points of the remaining prisms
{
�(k)

}
k /∈K0

.

Proof. By [1] Theorem 1.5 there exist prisms �(i1), . . . ,�(ir ) such that

F =Si1 +· · ·+Sir +p

with

Sij ={x ∈�(ij ) | 〈nF ,x〉=dij }, j =1, . . . , r,

where dij =maxx∈�
ij 〈nF ,x〉 > 0 and p is a sum of extreme points of the

remaining prisms.
Put K0 = {i1, . . . , ir}. Since every Sk is an extreme subset of the Pareto

face of �(k), it can be written as

Sk =�
(k)

J (k)

with a suitable subset J (k) ⊆ I .

Hence every maximal face contains a translate of the Minkowski sum of
non-zero dimensional extreme sets of prisms. Observe that the outer nor-
mals of the maximal face and the Minkowski sum of non-zero dimensional
extreme sets of prisms are equal up to a nonnegative multiple.

Henceforth we use K = {1, . . . ,K} for the index set of a collection of
positive vectors. In view of the above presentation we assign to every max-
imal face

F ⊂�=
K∑

k=1

�(k) =
∑

k∈K

�(k)

the following collection of pairs of index sets

J F =
(
K0,

[
J (k)

]
k∈K0

)
.



COMPUTING THE MINKOWSKI SUM OF PRISMS 325

Here K0 ⊂K is the set of indices of those prisms �(k), the face of which
is not zero-dimensional with respect to nF , i.e., that satisfy

dim (Sk)=dim
({x ∈�(k) | 〈nF ,x〉=dk})�1

with dk =maxx∈�k 〈nF ,x〉> 0. Also, J (k) contains the indices of the extreme
points of this face in �(k). We call set JF the canonical reference system of F.

PROPOSITION 2.3. Let a(1), . . . ,a(K) ∈ R
n be a family of positive vectors

and let

�=
K∑

k=1

�(k)

with �(k) =�a(k)

for k ∈K. Let F ⊂� be a maximal face and nF ∈R
n be an

outer normal of the face F.

Then nF is a strictly positive vector.
Proof. Let us assume that F ⊂� is a maximal face of � and that nF =

(α1, . . . , αn)∈R
n is an outer normal with level 1 of F. Then

F ={x ∈� | 〈nF ,x〉=1}.

By the decomposition principle there exist prisms �(k) (k∈K0) such that

F =
∑

k∈K0

�
(k)

J (k) +p

satisfying

�
(k)

J (k) ={x ∈�(k) | 〈nF ,x〉=dij }, k ∈K0,

where dk =maxx∈�k 〈nF ,x〉 > 0 and p is a sum of extreme points of the
remaining prisms. Moreover,

〈nF ,a(k)i〉=dk (i ∈J (k)).

Since

〈nF ,a(k),i〉=αia
(k)
i

it follows that αi >0 and from the assumption that F is a maximal face, i.e.
dimF =n−1, it follows that all components of nF are greater than zero.
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THEOREM 2.4. Let a(1), . . . ,a(K) ∈ R
n be a family of positive vectors and

let

�=
K∑

k=1

�(k)

with �(k) = �a(k)

for k ∈ K. Let F ⊂ � be a maximal face of � with outer
normal nF ∈R

n and let with suitable K0 ⊆K

F =
∑

k∈K0

�
(k)

J (k) +p

with

�
(k)

J (k) ={x ∈�(k) | 〈nF ,x〉=dk}, k ∈K0,

where dk =maxx∈�k 〈nF ,x〉 > 0 and p is a sum of extreme points of the
remaining prisms. Then, for any decomposition of I = {1, . . . , n} into two
nonempty disjoint subsets I 0 and I 1 there exists κ ∈ K0 such that J (κ) has
a nonempty intersection with both sets I 0 and I 1.

Proof. Let us assume that the assertion is not true. Then there exists a
decomposition of {1, . . . , n} into two nonempty disjoint subsets I 0 and I 1

such that every set J (k) from the canonical reference system of F belongs
either to I 0 or to I 1.

Now, to every κ ∈K0 we assign a fixed index ik ∈J (k) and a row-vector

â(k) =
∑

i∈J (k)

a(k)i −a(k)ik .

Since

〈nF ,a(k)i〉=〈nF ,a(k)ik 〉 (i ∈J (k)),

it follows that the above row-vector is orthogonal to the outer normal vec-
tor nF .

Now we build a matrix that involves all these row-vectors. Necessar-
ily, after a suitable permutation of rows and columns, this matrix has the
following form:
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M =

· · · I 0 · · · · · · I 1 · · ·
⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

A 0

0 B

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since the outer normal vector nF is uniquely determined up to a positive
multiple and belongs to the kernel of the above matrix M, we deduce, that
the rank of M is (n−1).

If both sub-matrices A and B do not have full rank, then M has at most
rank (n−2) which is not possible, so we can assume, that B has full rank
and A not. Hence the equation MnF =0 has a solution, where all compo-
nents of nF with indices in I 1 vanish and this is a contradiction to Prop-
osition 2.3.

3. The Coincidence Theorem

Given two convex sets A,B ⊂R
n we denote by

A∨B = conv(A∪B)

the convex hull of their union. Also we write

�a
J =�a

J ∨{0}

for the prism generated by an extreme set of �a. The notation �
(k)

J (k) then
refers to the vector a(k) of a family. Then we have:

THEOREM 3.1. Let a(1), . . . ,a(K) ∈ R
n be a family of positive vectors and

let

�=
K∑

k=1

�(k)

with �(k) =�a(k)

for k ∈{1, . . . ,K}. Let F ⊂� be a maximal face of �.
Then a vector nF ∈R

n is an outer normal (to the level 1) of the maximal
face F ⊂� if and only if there exist K0 ⊂K and faces

�
(k)

J (k) ⊂�(k), k ∈K0

as well as positive numbers ck ∈R which satisfy the following conditions:
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(1) For every k ∈K0 the linear function x �→〈nF ,x〉 is constant equal to 1
on the face ck�

(k)

J (k) .

(2) if, for some k, l ∈ K0, two different faces ck�
(k)

J (k) and cl�
(l)

J (l) have
extreme points which lie on the same coordinate axis, then these
extreme points coincide.

(3) The prism

�̂=
∨

k∈K0

ck�
(k)

J (k)

is n-dimensional and its outer normal (to the level 1) is the outer nor-
mal nF of F.

Proof. Let us assume that F ⊂� is a maximal face of � and that nF ∈R
n

is an outer normal of F. Then

F ={x ∈� | 〈nF ,x〉=1}.

By the decomposition principle there exist prisms �(k) k ∈K0 such that

F =
∑

k∈K0

�
(k)

J (k) +p

where p is a sum of extreme points of the remaining prisms with index
k /∈K0. Again we know that with

�
(k)

J (k) ={x ∈�(k) | 〈nF ,x〉=dk}, k ∈K0,

with dk =maxx∈�(k)〈nF ,x〉>0.
Now observe that the faces

�
(k)

J (k) (k ∈K0)

are lying in parallel hyperplanes, namely

Hk ={z∈R
n | 〈nF , z〉=dk}, k ∈K0,

with dk >0 (k ∈K0). Now choose

ck = 1
dk

, k ∈K0.

Then the first condition is satisfied.
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Now assume that two faces ck�
(k)

J (k) and cl�
(l)

J (l) have extreme points which
lie on the j th coordinate axis, i.e.

cka
(k)
j ej ∈ ck�

(k)

J (k)

and

cla
(l)
j ej ∈ cl�

(l)

J (l) .

Then

〈nF ,a
(k)
j ej 〉=dk

and

〈nF ,a
(l)
j ej 〉=dl,

hence

dk

a
(k)
j

= dl

a
(l)
j

.

which means that

cka
(k)
j = cla

(l)
j .

Hence, the two extreme points coincide. As a consequence, no extreme
point of any face ck�

(k)

J (k) will become an inner point in

�̂=
∨

k∈K0

ck�
(k)

J (k)

which implies that dim �̂=n−1. Moreover the function

x �→ 〈nF ,x〉

is constant equal to 1 on �̂ and therefore nF ∈R
n is an outer normal (to

the level 1) of �̂ which proves one direction of the theorem.
For the converse direction let us assume that there exists a set K0 ⊂ K

and faces

�
(k)

J (k) ⊂�(k)

of the corresponding prisms as well as positive numbers ck ∈R, k∈K0 with
the properties (1–3):
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(1) For every k ∈K0 the linear function x �→〈nF ,x〉 is constant equal to
1 on the face ck�

(k)

J (k) .

(2) If two different faces ck�
(k)

J (k) and cl�
(l)

J (l) have extreme points on the
same coordinate axis, then they coincide.

(3) The prism

�̂=
∨

k∈K0

ck�
(k)

J (k) (3.1)

is n-dimensional and its outer normal (to the level 1) coincides with
the outer normal nF of F.

Then let us consider the outer normal (to the level 1) nS of the n-dimen-
sional prism �̂ as given by (3.1). The functional f (·)=〈nS, ·〉 achieves its
maximal values on the prisms

{
�(k)

}
k∈K0

on the faces

�
(k)

J (k) ⊂�(k) (k ∈K0).

Since every maximal face of � is the sum of faces of the prisms �(k)

(k ∈K), it follows that a translate of the set
∑

k∈K0

ckD
(k)

J (k)

is contained in a maximal face F ⊂�. Now we will prove that

dim

⎛

⎝
∑

k∈K0

ck�
(k)

J (k)

⎞

⎠=n−1

holds true. Indeed, by condition (3) of the assertion the prism
∨

k∈K0
ck�

(k)

J (k)

is full-dimensional. Hence the Pareto-face has the dimension (n−1). Since
the Pareto-face of �̂ is the convex hull of the faces ck�

(k)

J (k) (k ∈K0), there
exist edges of this face which are orthogonal to the vector nS and span a
linear space of dimension (n − 1), which means that dim

∑
k∈K0

ck�
(k)

J (k) =
n−1.

Consequently, F and the set
∑

k∈K0
ck�

(k)

J (k) have the same outer normal.

Since the set
∑

k∈K0
ck�

(k)

J (k) and the prism �̂ have common outer normals,
the converse direction is proved.
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Theorem 3.1 gives a possibility for an abstract description of the struc-
ture of faces in higher dimensions.

PROPOSITION 3.2. Let a = (a1, . . . , an) > 0 ∈ R
n and b = (b1, . . . , bn) >

0 ∈R
n be positive vectors and let �a and �b be the associated prisms.

Assume that the linear function x �→〈a,x〉 achieves its maximum over �b in
the extreme point bi0 =bi0e

i0 ∈�b, then

bi0

ai0

�a ⊇�b

and bi0e
i0 is a common extreme point of both the prisms

bi0
ai0

�a and �b.
Proof. Since the linear function x �→ 〈a,x〉 achieves its maximum over

�b in the extreme point bi0e
i0 ∈�b, we have

max
{〈a,x〉|x ∈�b

}= bi0

ai0

which implies

bi0

ai0

�a ⊇�b

and that
bi0
ai0

�a and �b have bi0e
i0 as a common extreme point.

4. Faces and Permutations

Tentatively we consider the case of two prisms. For convenience we
use a simplified notation. For two vectors a = (a1, . . . , an) > 0 ∈ R

n and
b= (b1, . . . , bn)>0 ∈R

n we write

A=�a = conv
({

0,a1, . . . ,an
})

and

B =�b = conv
({

0,b1, . . . ,bn
})

for the associated prisms. In this case, if the two prisms A and B have a
common extreme point on their Pareto-faces then the following statement
holds:

LEMMA 4.1. Suppose that ai =bi holds true for some i ∈I . Then for every
index l �= i holds:
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(1) al ∈A is an extreme point of A∨B if and only if al

bl
� ai

bi

(2) bl ∈B is an extreme point of A∨B if and only if al

bl
� ai

bi
.

Proof. In view of

A= conv
({

0,a1, . . . ,an
})

and B = conv
({

0,b1, . . . ,bn
})

we have

A∨B = conv
({

0,max{a1, b1}e1, . . . ,max{ai−1, bi−1}ei−1, ake
i ,

max{ai+1, bi+1}ei+1, . . . . . . . . . ,max{al, bl}el , . . . ,max{an, bn}en
})

.

Now bl ∈B is an extreme point of A∨B if and only if al �bl which is
equivalent to al

bl
�1= ai

bi
, because ai =bi by assumption

The proof of the first statement is identical to this one.

Now we consider the case of three prisms. We augment the notation by
introducing

C =�c = conv
({

0, c1, . . . , cn
})

LEMMA 4.2. Let a,b, c be positive vectors and let A,B,C be the associ-
ated prisms. Assume that for an index i ∈ I the equations ai = bi = ci hold
true. Then, for every l �= i, the extreme point cl ∈ C is an extreme point of
A∨B ∨C as well if and only if

ai

ci

� al

cl

and
bi

ci

� bl

cl

is satisfied.
Proof. The proof is identical to the proof of the previous Lemma 4.1. If

A, B and C are as above, then we have

A∨B ∨C

= conv
({

0,max{a1, b1, c1}e1, . . . ,max{ai−1, bi−1, ci−1}ei−1, aie
i ,

max{ai+1, bi+1, ci+1}ei+1, . . . . . . . . . ,max{al, bl, cl}el , . . . ,

max{an, bn, cn}en
})

.

Now cl ∈ C is an extreme point of A ∨ B ∨ C if and only if al � cl and
bl � cl which is equivalent to al

cl
� 1 = ai

ci
and bl

bl
� 1 = bi

ci
because ai = bi = ci

holds by assumption.
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PROPOSITION 4.3. Let a,b be positive vectors and let A,B be the associ-
ated prisms. For i ∈ I let

F i
A = conv

({
al|l ∈{1, . . . , n} with

al

bl

� ai

bi

})

and

F i
B = conv

({
bl|l ∈{1, . . . , n} with

al

bl

� ai

bi

})
.

Then the sum

F i
A +F i

B

is contained in a maximal face of A+B.

Proof. As biA and aiB have a common extreme point, the result follows
immediately from Lemma 4.1 and Theorem 3.1.

We may now reformulate Proposition 4.3 in terms of permutations as fol-
lows.

DEFINITION 4.4. Let a > 0,b > 0 be vectors of R
n. A permutation

π : I −→ I is called a positioning permutation if

aπ(1)

bπ(1)

�
aπ(2)

bπ(2)

� · · ·� · · ·� aπ(l)

bπ(l)

� · · · · · ·� aπ(n)

bπ(n)

.

We say that the vectors a,b as well as the two prisms A=�a and B =�b

are in regular position if their positioning permutation is uniquely defined.
The positioning permutation is then denoted by π(A,B).

A positioning permutation reflects the “relative position” of the associ-
ated prisms A and B. Such a permutation does always exist, though it may
not be uniquely determined. To avoid degenerated cases, we will henceforth
always assume that all prisms are pairwise in regular position.

COROLLARY 4.5 (Faces and Permutations). Let a = (a1, . . . , an) > 0 ∈ R
n

and b= (b1, . . . , bn)>0∈R
n be given. Let π(A,B) be the positioning permuta-

tion of A and B. Then, for every i ∈ I and

F i
A = conv

({
al|l ∈{1, . . . , n} with π−1

(A,B)(l)�π−1
(A,B)(i)

})

and

F i
B = conv

({
bl|l ∈{1, . . . , n} with π−1

(A,B)(l)�π−1
(A,B)(i)

})
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the sum

F i
A +F i

B

is contained in a maximal face of A+B.

Given two prisms A and B, which are in regular position. Then the
n-tuple

�

(
A

B

)
= [

π(A,B)(1), π(A,B)(2), . . . , π(A,B)(n)
]

is a strictly decreasing set of indices, the order induced by π(A,B), i.e.

i � j ⇐⇒ π−1
(A,B)(i)�π−1

(A,B)(j).

Let us now introduce the abbreviation

AB(i)=F i
A +F i

B,

for the sum of two faces as defined above. Then for every i ∈I the part of
the face AB(i) which belongs to A is determined by the indices which are
greater or equal to k in the order induced by π(A,B) and the part of the
face AB(i) which belongs to B is determined by the indices which are less
or equal to k in the order induced by π(A,B).

In terms of the positioning permutation we deduce from Lemma 4.2:

PROPOSITION 4.6. Suppose we are given 3 vectors a >0∈R
n, b>0∈R

n,

and c > 0 ∈ R
n and let A, B and C be the associated prisms. Moreover, let

π(A,B) and π(A,C) be the corresponding positioning permutations.
Then for every index i ∈ I the sum

ABC(i)=F i
A +F i

B +F i
C

with

F i
A=conv

({
al|l ∈I with π−1

(A,B)(l)�π−1
(A,B)(i)

and π−1
(A,C)(l)�π−1

(A,C)(i)
})

F i
B = conv

({
bl|l ∈{1, . . . , n} with π−1

(B,A)(l)�π−1
(B,A)(i)

and π−1
(B,C)(l)�π−1

(B,C)(i)
})
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and

F i
C = conv

({
cl|l ∈{1, . . . , n} with π−1

(C,A)(l)�π−1
(C,A)(i)

and π−1
(C,B)(l)�π−1

(C,B)(i)
})

is contained in a maximal face of A+B +C.

Proof. We know that biciA, aiciB and aibiC have a common extreme
point. Now the result follows immediately from Lemma 4.2 and Theorem
3.1.

Note that the similar condition stated in Proposition 4.6 is true for any
finite sum.

PROPOSITION 4.7. Suppose we have 3 vectors a >0∈R
n, b>0∈R

n, and
c > 0 ∈ R

n and let A = �a,B = �b, and C = �c be the associated prisms.
Moreover, let π(A,B) and π(A,C) be the corresponding positioning permutations.

If for two indices i, l ∈ I we have:

– i � l in the order induced by π(A,B),

– l � i in the order induced by π(A,C),

then AB(l) and AC(i) have a parallel edge which is parallel to the line seg-
ment between ai and al . The converse is also true.

Proof. By Proposition 4.3 we have:

F l
A = conv

({
ar |r ∈ I with r � l in the order induced by π(A,B)

})
,

F l
B = conv

({
bs |s ∈ I with s � l in the order induced by π(A,B)

})
,

F i
A = conv

({
as |s ∈ I with s � i in the order induced by π(A,C)

})

and

F i
C = conv

({
cs |s ∈ I with s � i in the order induced by π(A,C)

})
.

Since i � l in the order induced by π(A,B) it follows that the line seg-
ment [ai ,al]⊂F l

A. Analogously, since l � i in the order induced by π(A,B)

it follows that [ai ,al]⊂F i
A. Hence [ai ,al]⊂AB(l) and [ai ,al]⊂AC(i).

The converse direction is also clear.

Proposition 4.7 gives a possibility to construct a maximal face by adjust-
ing two parallel edges. We will use the notation:

AB(l)AC(i)=F l
A +F l

B +F i
C =F i

A +F l
B +F i

C .

For the general case we have:
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THEOREM 4.8. Let a(1), . . . ,a(K) ∈ R
n be a family of positive vectors and

let

�=
K∑

k=1

�(k)

with �(k) =�a(k)

for k ∈K. Let F ⊂� be a maximal face with canonical ref-
erence system

JF =
(
K0,

[
J (k)

]
k∈K0

)

such that

F =
∑

k∈K0

�
(k)

J (k) +p,

with a suitable sum p of extreme points of the remaining prisms is satisfied.
Then, for every two different indices p,q ∈K0, we have for the index sets

J (p) and J (q) that with respect to the order induced by π(�(p),�(q)) the inequal-
ity

min
{
J (p)

}
� max

{
J (q)

}

holds true.
Proof. This is an immediate consequence of Proposition 4.3.

5. The Adjustment Process: Two Examples

EXAMPLE 5.1. We consider 3 prisms in R
4 which are given by:

A= conv{(0,0,0,0), (7,0,0,0), (0,5,0,0), (0,0,3,0), (0,0,0,1)}
B = conv{(0,0,0,0), (2,0,0,0), (0,1,0,0), (0,0,10,0), (0,0,0,1)}
C = conv{(0,0,0,0), (1,0,0,0), (0,6,0,0), (0,0,6,0), (0,0,0,5)}.

For the permutations we have

π(A,B) =
(

1 2 3 4
2 1 4 3

)

π(A,C) =
(

1 2 3 4
1 2 3 4

)

π(B,C) =
(

1 2 3 4
1 3 2 4

)
.
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Hence we have:

�

(
A

B

)
= [2, 1, 4, 3]

�

(
A

C

)
= [1, 2, 3, 4]

�

(
B

C

)
= [1, 3, 2, 4]

Table of Faces

Permutation Adjusting Adjusting Adjusting Adjusting
k =1 k =2 k =3 k =4

π(A,B) [a1, a2]+ [b1, b3, b4]
︸ ︷︷ ︸

AB(1)

AB(2)=B AB(3)=A [a1, a2, a3]+ [b3, b4]
︸ ︷︷ ︸

AB(4)

π(A,C) AC(1)=C [a1, a2]+ [c2, c3, c4]
︸ ︷︷ ︸

AC(2)

[a1, a2, a3]+ [c3, c4]
︸ ︷︷ ︸

AC(3)

AC(4)=A

π(B,C) BC(1)=C [b1, b2, b3]+ [c3, c4]
︸ ︷︷ ︸

BC(2)

[b1, b3]+ [c2, c3, c4]
︸ ︷︷ ︸

BC(3)

BC(4)=B

This describes 9 faces. The last face is constructed by Theorem 4.8, it is:

F = [a1, a2]+ [b1, b3]+ [c2, c4],

because we have:

– min{1,2} � max{1,3,4} in the order induced by π(A,B),

– min{1,2} � max{2,3,4} in the order induced by π(A,C),

– min{1,3} � max{2,3,4} in the order induced by π(B,C).

Hence the index set which belongs to A is {1,2}, the index set which
belongs to B is {1,3,4} ∩ {1,3} = {1,3}, as follows from the inequalities
implied by the orders of π(A,B) and π(B,C). Analogously the set of indices
{2,4} belongs to C, because {2,4}=�

(
B
C

)\ {1,3}.
The corresponding system of inequalities for A+B +C is:

30x1 + 30x2 + 5x3 + 6x4 � 300
5x1 + 7x2 + x3 + 10x4 � 95
5x1 + 10x2 + x3 + 2x4 � 70
5x1 + 10x2 + x3 + 5x4 � 85

150x1 + 210x2 + 35x3 + 42x4 � 1610
15x1 + 21x2 + 35x3 + 42x4 � 665
15x1 + 21x2 + 35x3 + 105x4 � 980
25x1 + 30x2 + 5x3 + 6x4 � 255
10x1 + 14x2 + 7x3 + 70x4 � 490
25x1 + 35x2 + 5x3 + 7x4 � 260.
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The polytope A+B +C has the following 21 extreme points:

(0,0,0,0), (10,0,0,0), (9,1,0,0), (9,0,6,0), (9,0,0,5), (7,1,10,0), (7,0,16,0),

(7,0,10,5), (7,0,0,6), (2,6,0,0), (2,5,0,5), (0,7,0,0), (0,6,0,5), (0,6,10,0)

(0,5,16,0), (0,5,10,5), (0,0,19,0), (0,0,13,5), (0,5,0,6), (0,0,10,6), (0,0,0,7).

EXAMPLE 5.2. We consider 4 prisms in R
5 which are given by:

A= conv{(0,0,0,0,0), (7,0,0,0,0), (0,5,0,0,0), (0,0, 3,0,0), (0,0,0,1,0), (0,0,0,0,9)}
B = conv{(0,0,0,0,0), (2,0,0,0,0), (0,1,0,0,0), (0,0,10,0,0), (0,0,0,1,0), (0,0,0,0,3)}
C = conv{(0,0,0,0,0), (1,0,0,0,0), (0,1,0,0,0), (0,0, 4,0,0), (0,0,0,5,0), (0,0,0,0,2)}
D = conv{(0,0,0,0,0), (2,0,0,0,0), (0,3,0,0,0), (0,0,24,0,0), (0,0,0,4,0), (0,0,0,0,8)}.

For these prisms we have:

�

(
A

B

)
= [2, 1, 5, 4, 3]

�

(
A

C

)
= [1, 2, 5, 3, 4]

�

(
A

D

)
= [1, 2, 5, 4, 3]

�

(
B

C

)
= [3, 1, 5, 2, 4]

�

(
B

D

)
= [1, 3, 5, 2, 4]

�

(
C

D

)
= [4, 1, 2, 5, 3] .

From Proposition 3.2 it follows that

AB(3)=AC(4)=AD(3)=A,

AB(2)=BC(4)=BD(4)=B,

AC(1)=BC(3)=CD(3)=C,

AD(1)=BD(1)=CD(4)=D.

Next we have 12 faces generated by two prisms, where one face of the
generating prisms is one-dimensional. This are the faces:



COMPUTING THE MINKOWSKI SUM OF PRISMS 339

AB(1)= [a1, a2]+ [b1, b3, b4, b5], AB(4)= [b3, b4]+ [a1, a2, a3, a5] from �
(

A
B

)

AC(2)= [a1, a2]+ [c2, c3, c4, c5], AC(3)= [c3, c4]+ [a1, a2, a3, a5] from �
(

A
C

)

AD(2)= [a1, a2]+ [d2, d3, d4, d5], AD(4)= [d3, d4]+ [a1, a2, a4, a5] from �
(

A
B

)

BC(1)= [b1, b3]+ [c1, c2, c4, c5], BC(2)= [c2, c4]+ [b1, b2, b3, b5] from �
(

A
B

)

BD(3)= [b1, b3]+ [d2, d3, d4, d5], BC(2)= [d2, d4]+ [b1, b2, b3, b5] from �
(

A
B

)

CD(1)= [c1, c4]+ [d1, d2, d3, d5], CD(5)= [d3, d5]+ [c1, c2, c4, c5] from �
(

A
B

)
.

There are 6 faces generated by two prisms, where both faces of the gen-
erating prisms is two-dimensional. This faces are generated by the middle
elements in the ordered 5-tupels �

(
A
B

)
, etc:

AB(5)= [a1, a,a5]+ [b3, b4, b5] from �
(

A
B

)

AC(5)= [a1, a2, a5]+ [c3, c4, c5] from �
(

A
C

)

AD(5)= [a1, a2, a5]+ [d3, d4, d5] from �
(

A
B

)

BC(5)= [b1, b3, b5]+ [c2, c4, c5] from �
(

A
B

)

BD(5)= [b1, b3, b5]+ [d3, d4, d5] from �
(

A
B

)

CD(2)= [c1, c2, c4]+ [d2, d3, d5] from �
(

A
B

)
.

The next 12 faces are generated by three prisms. By Theorem 2.4 this
faces can be generated by one or by two indices for the adjustment. We
begin with the first 4 faces, which are generated by adjusting one index.
This are the faces:

ABC(5)= [a1, a2, a5]+ [b3, b5]+ [c4, c5] for min{1,2,5}=max{3,4,5} in �( A

B
),

min{1,2,5}=max{3,4,5} in �( A

C
),

min{1,3,5}=max{2,4,5} in �(B

C
),

ABD(5)= [a1, a2, a5]+ [b3, b5]+ [d4, d5] for min{1,2,5}=max{3,4,5} in �( A

B
),

min{1,2,5}=max{3,4,5} in �( A

D
),

min{1,3,5}=max{2,4,5} in �( B

D
),

ACD(2)= [a1, a2]+ [b2, b4]+ [d2, d3, d5] for min{1,2}=max{2,3,4,5} in �( A

B
),

min{1,2}=max{2,3,4,5} in �( A

D
),

min{1,2,4}=max{2,3,5} in �( B

D
),

ACD(5)= [a1, a2, a5]+ [c4, c5]+ [d3, d5] for min{1,2,5}=max{3,4,5} in �( A

C
),

min{1,2,5}=max{3,4,5} in �( A

D
),

min{1,2,4,5}=max{3,5} in �( C

D
).
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The next 8 faces are:

(AB(1))(AC(2))= [a1, a2]+ [b1, b3, b5]+ [c2, c4] for min{1,2}=max{1,3,4,5} in �( A

B
),

min{1,2}=max{2,3,4,5} in �( A

C
),

and min{1,3,5}>max{2,4} in �(B

C
),

or min{1,3}>max{2,4,5} in �(B

C
),

(AC(2))(BC(5))= [a1, a2]+ [b3, b5]+ [c2, c4, c5] for min{2,3,4,5}=max{1,2} in �(C

A
),

min{2,4,5}=max{1,3,5} in �(C

B
),

min{1,2}>max{3,4,5} in �( A

B
),

(AB(1))(BD(5))= [a1, a2]+ [b1, b3, b5]+ [d4, d5] for min{1,3,4,5}=max{1,2} in �(B

A
),

min{1,3,5}=max{2,4,5} in �( B

D
),

min{1,2}>max{3,4,5} in �( A

D
),

(AB(1))(BD(3))= [a1, a2]+ [b1, b3]+ [d3, d4, d5] for min{1,3,4,5}=max{1,2} in �(B

A
),

min{1,3}=max{2,3,4,5} in �( B

D
),

and min{1,2}>max{3,4,5} in �( A

D
),

or min{1,2,5}>max{3,4} in �( A

D
),

(AC(2))(CD(5))= [a1, a2]+ [c2, c4, c5]+ [d3, d5] for min{2,3,4,5}=max{1,2} in �(C

A
),

min{1,2,4,5}=max{3,5} in �( C

D
),

min{1,2}>max{3,4,5} in �( A

D
),

(CD(2))(BD(5))= [b1, b3, b5]+ [c2, c4]+ [d2, d5] for min{2,4,5}=max{1,3,5} in �(D

B
),

min{2,3,5}=max{1,2,4} in �(D

C
),

min{1,3,5}>max{2,4} in �(B

C
),

(BD(3))(CD(5))= [b1, b3]+ [c2, c4, c5]+ [d3, d5] for min{2,3,4,5}=max{1,3} in �(D

B
),

min{3,5}=max{1,2,4,5} in �(D

C
),

min{1,3}>max{2,4,5} in �(B

C
),

(BD(3))(CD(2))= [b1, b3]+ [c2, c4]+ [d2, d3, d4] for min{2,3,4,5}=max{1,3} in �(D

B
),

min{2,3,5}=max{1,2,4} in �(D

C
),

and min{1,2}>max{2,4,5} in �(B

C
),

or min{1,3,5}>max{2,4} in �(B

C
).

There is one face which is generated by all four prisms, i.e.

(AB(1))(AC(2))(BD(3)= [a1, a2]+ [b1, b3]+ [c2, c4]+ [d3, d5].
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This face can be determined by Theorem 4.8 from the following inequal-
ities:

2>1>3 in �(A
B
),

1>2 in �(A
C
),

min{1,3}>2 in �(B
C
),

1>3 in �(B
D

),

2>3 in �(C
D

).

This examples show that it is possible to determine all faces of the
Minkowski sum of prisms for small dimensions.
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